Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)es
dc.contributor.authorLopez, Brunoes
dc.contributor.authorNarancio, Gabrieles
dc.contributor.authorUsera, Gabrieles
dc.contributor.authorMendina, Marianaes
dc.contributor.authorDraper, Martines
dc.contributor.authorCataldo, Josees
dc.date.accessioned2023-04-13T14:08:02Z-
dc.date.available2023-04-13T14:08:02Z-
dc.date.issued2014-05-05-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/3194-
dc.description.abstractReproduction of atmospheric boundary layer wind tunnel experiments by numerical simulation is achieved in this work by directly modeling with immersed boundary method the geometrical elements placed in the wind tunnel's floor to induce the desired characteristics to the boundary layer.The wind tunnel has a cross section of 2.2 m x 2.25 m, with an inlet region 14 m long and a working region 2 m long. Boundary layer development is shaped up with a series of cubical elements, 3 cm in side, placed in a regular staggered arrangement with a 15 cm spacement. Vortex induction, Standen spires type elements, of 13,4 cm height, and a wall of 31.5 cm height are placed at the inlet. This arrangement is used to reproduce a representative urban site boundary layer (figure 1).The numerical model is implemented on the basis of the open source modelcaffa3d.MBRi [Usera et al 2008], which uses a finite volume method over block structured grids, coupled with various LES approaches for turbulence modeling and parallelization through domain decomposition with MPI [Mendina et al 2013]. Simulations were setup with approximately 2 million cells per block, with a 26 block arrangement. The computational grid is horizontally uniform with a resolution of 1.04 cm x 1.04 cm and nonuniform in vertical direction with the grid points concentrated near the floor . The grid spacing is geometrically stretched away from the floor with a minimum value of 1mm. The time step is 0.1 second and the computation is distributed in 26 cores on the Cluster-FING infraestructure [www.fing.edu.uy/cluster]. The Immersed boundary method approach followed the work of [Liao et al 2009]. Numerical simulation results are compared to wind tunnel measurements for the mean velocity profiles (figure 2), rms profiles and spectrums, providing good overall agreement. We conclude that the Immersed Boundary Condition method is a promising approach to numerically reproduce ABL Boundary Layer development methods used in physical modeling.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.relation.urihttps://hdl.handle.net/20.500.12381/3189-
dc.relation.urihttps://hdl.handle.net/20.500.12381/3190-
dc.relation.urihttps://hdl.handle.net/20.500.12381/3191-
dc.relation.urihttps://hdl.handle.net/20.500.12381/3192-
dc.relation.urihttps://hdl.handle.net/20.500.12381/3193-
dc.rightsAcceso abiertoes
dc.sourceWorkshop "Wall Turbulence Workshop"es
dc.subjectFluidoses
dc.subjectModelaciónes
dc.subjectTunel de vientoes
dc.titleNumerical ABL Wind Tunnel Simulations with Direct Modeling of Roughness Elements through Immersed Boundary Condition Methodes
dc.typeDocumento de conferenciaes
dc.subject.aniiIngeniería y Tecnología-
dc.subject.aniiIngeniería Mecánica-
dc.identifier.aniiFSE_1_2011_1_6015es
dc.type.versionPublicadoes
dc.anii.institucionresponsableUniversidad de la Repúblicaes
dc.anii.subjectcompleto//Ingeniería y Tecnología/Ingeniería Mecánica/Ingeniería Mecánicaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo Descripción Tamaño Formato  
Paper.Lille.May.2014.0006.pdfpaper1.6 MBAdobe PDFDescargar

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)