Título : Informe final del proyecto: Inteligencia Artificial aplicada a redes 5G
Autor(es) : Belzarena Garcia, Pablo Javier
Larroca Ponzoni, Federico
Bermolen Romeo, Maria Paola
Inglés Loggia, Lucas
Belcredi Zambra, Gonzalo
Randall Carlevaro, Martín
Fecha de publicación : 29-dic-2022
Tipo de publicación: Reporte técnico
Versión: Aceptado
Publicado por: Agencia Nacional de Investigación e Innovación
Areas del conocimiento : Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Telecomunicaciones
Otros descriptores : Redes 5G
Inteligencia artificial
Resumen : El problema abordado es la asignación de recursos en redes 5G. En particular el proyecto trabajó en el desarrollo de una herramienta que permite implementar y simular algoritmos para la asignación de recursos de tiempo y frecuencia en redes 5G. Se puso especial énfasis en el desarrollo de algoritmos que utilicen herramientas de inteligencia artificial ya que por la heterogeneidad de servicios de las redes 5G es necesario que la red aprenda la mejor forma de asignar recursos en diferentes escenarios. Se propusieron nuevos algoritmos asignación de recursos que permiten utilizando inteligencia artificial aprender la asignación óptima de recursos para servicios de muy diferentes requerimientos en cuanto a ancho de banda y latencia. Se desarrolló un simulador de redes 5G, Py5cheSim, que integra funcionalidades que no se encuentran en simuladores de uso público disponibles como la posibilidad de utilizar network slicing en la interfaz de radio. Esta herramienta cuenta con un framework que permite el desarrollo de nuevos algoritmos de asignación de recursos de forma amigable sin la necesidad de conocer en detalle todo el núcleo del simulador. Py5cheSim se licenció bajo licencia de software libre y se encuentra disponible. Por último, durante la ejecución del proyecto se formaron varios recursos humanos en las áreas de investigación abordadas; en particular tres estudiantes de posgrado desarrollaron sus tesis (dos de maestría, una de doctorado) y se dirigieron dos proyectos de fin de carrera.
URI / Handle: https://hdl.handle.net/20.500.12381/3200
Recursos resultantes del proyecto: https://hdl.handle.net/20.500.12008/31723
https://hdl.handle.net/20.500.12008/30570
https://hdl.handle.net/20.500.12008/30549
https://hdl.handle.net/20.500.12008/29240
https://hdl.handle.net/20.500.12008/30188
https://hdl.handle.net/20.500.12008/27324
https://youtu.be/L81q935K_58
Institución responsable del proyecto: Universidad de la República. Facultad de Ingeniería
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FMV_1_2019_1_155700
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)
Aparece en las colecciones: Informes finales publicables de I+D

Archivos en este ítem:
archivo  Tamaño Formato
Informe_final_publicable_FMV_1_2019_1_155700.pdfDescargar 111.39 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)