Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)es
dc.contributor.authorCormack, Andrew Nicholases
dc.date.accessioned2018-11-30T17:08:52Z
dc.date.accessioned2020-10-28T19:25:36Z
dc.date.accessioned2021-09-07T18:04:51Z-
dc.date.available2018-11-30T17:08:52Z
dc.date.available2020-10-28T19:25:36Z
dc.date.available2021-09-07T18:04:51Z-
dc.date.issued2016
dc.identifier.citationCormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018).es
dc.identifier.urihttps://hdl.handle.net/20.500.12381/326-
dc.description.abstractMost studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.es
dc.format.extentpp. 91-106es
dc.language.isoenges
dc.publisherSOLAR (Society for Learning Analytics Research)es
dc.rightsAcceso abiertoes
dc.sourceJournal of Learning Analyticses
dc.sourceVol. 3es
dc.sourceN° 1es
dc.subjectLearning analyticses
dc.subjectprivacyes
dc.subjectdata protectiones
dc.subjectconsentes
dc.subjectlegitimate interestses
dc.titleA Data Protection Framework for Learning Analyticses
dc.typeArtículoes
dc.subject.aniiCiencias Sociales-
dc.subject.aniiCiencias de la Educación-
dc.type.versionPublicadoes
dc.identifier.doihttps://doi.org/10.18608/jla.2016.31.6
dc.ceibal.researchlineRecursos y plataformases
dc.ceibal.researchlineNuevas formas de conocer, aprender, enseñar y evaluares
dc.ceibal.researchlineOtroes
dc.subject.ceibalEducaciónes
dc.subject.ceibalPrivacidades
dc.subject.ceibalÉticaes
dc.subject.ceibalTecnologíaes
Aparece en las colecciones: Fundación Ceibal

Archivos en este ítem:
archivo  Descripción Tamaño Formato
4554-Article Text-21702-1-10-20160423 (1).pdfDescargar 494.11 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)