Título : Transforming Data into Information: Overcoming Challenges in Educational Data Analysis
Autor(es): da Silva, Natalia
Fecha de publicación : 11-jun-2024
Tipo de documento: Documento de conferencia
Versión: Aceptado
Publicado por : useR conference, Salzburg, Austria, 2 de Julio
Areas del conocimiento: Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Líneas de investigación: Uso de datos para el acompañamiento de las trayectorias educativas
Temas de investigación: Evaluación basada en el uso de datos masivos: analíticas de aprendizaje y minería de datos educativos
Palabras clave del autor: Learning management Systems, monitor use in LMS, statistical learning methods to predict students' performance
Resumen : The use of different Learning Management Systems (LMS) for various objectives has become a key tool in education. A huge volume of student and teacher data is generated by LMS on a daily basis. Transforming this data into relevant information for decision-making is a major challenge due to the complexity of the data structure and the difficulty of summarizing the learning process with registered information. This talk focuses on statistical tools for the evaluation and monitoring of LMS use by students and teachers. First, a web application was developed as a tool that allows monitoring the use of educational platforms in a user-friendly manner. Additionally, statistical learning methods were used to predict students' performance in tests using LMS information as predictors. Challenges such as data structure and size present many hurdles in this project. Most of these challenges are addressed using efficient computational tools at each stage of data analysis. Postgres serves as the SQL engine, data.table is used for data wrangling, and shiny, plotly, and ggplot2 are employed for communication and visualization. Finally, tidymodels and dbart are utilized for predictive models.
Extensión: 23 p.
URI / Handle: https://hdl.handle.net/20.500.12381/3551
Institución responsable del proyecto: Departamento de Métodos Cuantitativos, Instituto de Estadística, FCEA-UDELAR
Agencias / Instituciones financiadoras : ANII
Fundación Ceibal
Identificador ANII : FSED_2_2020_1_163528
Nivel de acceso : Acceso abierto
Licencia Creative Commons : Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)
Aparece en las colecciones: Fundación Ceibal

Archivos en este ítem:
archivo  Descripción Tamaño Formato
user2024_presentation.pdfDescargar Presentación en la conferencia useR 2024 en Salzburg, Austria1.24 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)