Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDelgado, Andreaes
dc.contributor.authorCalegari, Danieles
dc.date.accessioned2024-11-22T16:38:04Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/3700-
dc.description.abstractBusiness Process execution analysis is crucial for organizations to evaluate and improve them. Process mining provides the means to do so, but several challenges arise when dealing with data extraction and integration. Most scenarios consider implicit processes in support systems, with the process and organizational data being analyzed separately. Nowadays, many organizations increasingly integrate process-oriented support systems, such as BPMS, where process data execution is registered within the process engine database and organizational data in distributed potentially heterogeneous databases. They can follow the relational model or NoSQL ones, and organizational data can come from different systems, services, social media, or several other sources. Then, process and organizational data must be integrated to be used as input for process mining tasks and provide a complete view of the operation to detect and make improvements. In this paper, we extend previous work to support the c ollection of process and organizational data from heterogeneous sources, the integration of these data, and the automated generation of XES event logs to be used as input for process mining.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.relationhttps://doi.org/10.5220/0011322500003266es
dc.rightsAcceso restringido*
dc.source17th International Conference on Software Technologies (ICSOFT), Lisboa, Portugal, 11 al 13 de Julio 2022es
dc.subjectProcess mininges
dc.subjectData sciencees
dc.subjectProcess and Ooganizational data integrationes
dc.subjectProcess improvementes
dc.titleProcess and Organizational Data Integration from BPMS and Relational/NoSQL Sources for Process Mininges
dc.typeDocumento de conferenciaes
dc.subject.aniiCiencias Naturales y Exactas-
dc.subject.aniiCiencias de la Computación e Información-
dc.subject.aniiCiencias de la Computación-
dc.identifier.aniiFMV_1_2021_1_167483es
dc.type.versionPublicadoes
dc.rights.embargoreasonPublicado por SciTePress con copyright otorgado*
dc.anii.institucionresponsableUniversidad de la República. Facultad de Ingeniería. Instituto de Computaciónes
dc.rights.embargoterm9999-01-01*
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computaciónes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
ICSOFT_2022_98_CR.pdf
Acceso restringido
Descargar  Solicitar una copiaversión CRC del paper1.77 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: