Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento 4.0 Internacional. (CC BY) | - |
dc.contributor.author | Calegari, Daniel | es |
dc.contributor.author | Delgado, Andrea | es |
dc.date.accessioned | 2024-11-22T18:04:11Z | - |
dc.date.available | 2024-11-22T18:04:11Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/3704 | - |
dc.description.abstract | Process mining on business process execution data has focused primarily on orchestration-type processes performed in a single organization (intra-organizational). Collaborative (inter-organizational) processes, unlike those of orchestration type, expand several organizations (for example, in e-Government), adding complexity and various challenges both for their implementation and for their discovery, prediction, and analysis of their execution. Predictive process monitoring is based on exploiting execution data from past instances to predict the execution of current cases. It is possible to make predictions on the next activity and remaining time, among others, to anticipate possible deviations, violations, and delays in the processes to take preventive measures (e.g., re-allocation of resources). In this work, we propose an extension for collaborative processes of traditional process prediction, considering particularities of this type of process, which add information of interest in this context, for example, the next activity of which participant or the following message to be exchanged between two participants. | es |
dc.description.sponsorship | Agencia Nacional de Investigación e Innovación | es |
dc.language.iso | eng | es |
dc.relation.uri | https://hdl.handle.net/20.500.12381/3700 | es |
dc.relation.uri | https://hdl.handle.net/20.500.12381/3701 | es |
dc.relation.uri | https://hdl.handle.net/20.500.12381/3702 | es |
dc.relation.uri | https://hdl.handle.net/20.500.12381/3703 | es |
dc.rights | Acceso abierto | * |
dc.source | 6th International Conference on Process Mining (ICPM), 3rd Workshop on Collaboration Mining for Distributed Systems (COMINDS), Copenhague, Dinamarca, 14 al 18 de Octubre, 2024 | es |
dc.subject | Process mining | es |
dc.subject | Inter-organizational collaborative processes | es |
dc.subject | Predictive process monitoring | es |
dc.title | Extending predictive process monitoring for collaborative processes | es |
dc.type | Documento de conferencia | es |
dc.subject.anii | Ciencias Naturales y Exactas | |
dc.subject.anii | Ciencias de la Computación e Información | |
dc.subject.anii | Ciencias de la Computación | |
dc.identifier.anii | FMV_1_2021_1_167483 | es |
dc.type.version | Publicado | es |
dc.identifier.doi | https://doi.org/10.48550/arXiv.2409.09212 | - |
dc.anii.institucionresponsable | Universidad de la República. Facultad de Ingeniería. Instituto de Computación | es |
dc.anii.subjectcompleto | //Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación | es |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
2409.09212v1.pdf | Descargar | versión publicada en arXiv | 7.16 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento 4.0 Internacional. (CC BY)