Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA) | - |
dc.contributor.author | Duque, Johan | es |
dc.contributor.author | Aubet, Natalie | es |
dc.contributor.author | do Santos, Leonardo | es |
dc.contributor.author | Santos, Rafael | es |
dc.contributor.author | Arteaga, Johny | es |
dc.date.accessioned | 2025-05-08T15:07:36Z | - |
dc.date.available | 2025-05-08T15:07:36Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/3963 | - |
dc.description.abstract | Climate change has influenced several of the water cycle related variables such as rainfall that contribute to increasing natural disasters. To establish new methodologies for rivers level forecasting is necessary for the implementation of early warning systems. In this work, we present results of a multilayer perceptron artificial neural network (ANN) to forecast temporal series of water levels at the outlet of Rio Negro river with 24-hour antecedence. Input data was collected by a set of hydrological monitoring stations composed of water level and rainfall measures acquired with a one-day resolution. Water-level prediction were evaluated by the Nash-Sutcliffe coefficient (NSE) and by the root mean square error (RMSE). The results show consistency between predicted and observed values, especially when combining both water level and rainfall data. In such case, values of NSE reached 0.93 to 0.54 and RMSE between 0.028 and 0.061 for antecedence of 1 to 7 days respectively with implemented topology for the empirical model. | es |
dc.language.iso | eng | es |
dc.relation.ispartof | Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | es |
dc.rights | Acceso abierto | * |
dc.subject | Empirical hydrological modeling | es |
dc.subject | Water-level | es |
dc.subject | Rain | es |
dc.subject | Neural networks | es |
dc.title | Level river forecasting using empirical hydrological modeling for Rio Negro basin Uruguay | es |
dc.type | Preprint | es |
dc.subject.anii | Ciencias Naturales y Exactas | - |
dc.subject.anii | Ciencias de la Tierra y relacionadas con el Medio Ambiente | - |
dc.subject.anii | Oceanografía, Hidrología, Recursos Acuáticos | - |
dc.identifier.doi | https://doi.org/10.5540/03.2022.009.01.0269 | - |
dc.anii.institucionresponsable | Universidad Tecnológica del Uruguay | es |
dc.anii.institucionresponsable | National Institute for Space Research | es |
dc.anii.subjectcompleto | //Ciencias Naturales y Exactas/Ciencias de la Tierra y relacionadas con el Medio Ambiente/Oceanografía, Hidrología, Recursos Acuáticos | es |
Aparece en las colecciones: | Universidad Tecnológica |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
_Level river forecasting using empirical hydrological modeling for Rio Negro basin Uruguay_ Aubet, N, Duque, J.pdf | Descargar | 1.1 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)