Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)-
dc.contributor.authorDuque, Johanes
dc.contributor.authorAubet, Nataliees
dc.contributor.authordo Santos, Leonardoes
dc.contributor.authorSantos, Rafaeles
dc.contributor.authorArteaga, Johnyes
dc.date.accessioned2025-05-08T15:07:36Z-
dc.date.available2025-05-08T15:07:36Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/3963-
dc.description.abstractClimate change has influenced several of the water cycle related variables such as rainfall that contribute to increasing natural disasters. To establish new methodologies for rivers level forecasting is necessary for the implementation of early warning systems. In this work, we present results of a multilayer perceptron artificial neural network (ANN) to forecast temporal series of water levels at the outlet of Rio Negro river with 24-hour antecedence. Input data was collected by a set of hydrological monitoring stations composed of water level and rainfall measures acquired with a one-day resolution. Water-level prediction were evaluated by the Nash-Sutcliffe coefficient (NSE) and by the root mean square error (RMSE). The results show consistency between predicted and observed values, especially when combining both water level and rainfall data. In such case, values of NSE reached 0.93 to 0.54 and RMSE between 0.028 and 0.061 for antecedence of 1 to 7 days respectively with implemented topology for the empirical model.es
dc.language.isoenges
dc.relation.ispartofProceeding Series of the Brazilian Society of Computational and Applied Mathematicses
dc.rightsAcceso abierto*
dc.subjectEmpirical hydrological modelinges
dc.subjectWater-leveles
dc.subjectRaines
dc.subjectNeural networkses
dc.titleLevel river forecasting using empirical hydrological modeling for Rio Negro basin Uruguayes
dc.typePreprintes
dc.subject.aniiCiencias Naturales y Exactas-
dc.subject.aniiCiencias de la Tierra y relacionadas con el Medio Ambiente-
dc.subject.aniiOceanografía, Hidrología, Recursos Acuáticos-
dc.identifier.doihttps://doi.org/10.5540/03.2022.009.01.0269-
dc.anii.institucionresponsableUniversidad Tecnológica del Uruguayes
dc.anii.institucionresponsableNational Institute for Space Researches
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Tierra y relacionadas con el Medio Ambiente/Oceanografía, Hidrología, Recursos Acuáticoses
Aparece en las colecciones: Universidad Tecnológica

Archivos en este ítem:
archivo  Descripción Tamaño Formato
_Level river forecasting using empirical hydrological modeling for Rio Negro basin Uruguay_ Aubet, N, Duque, J.pdfDescargar 1.1 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)