Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA) | - |
dc.contributor.advisor | Ponce, Jorge | es |
dc.contributor.author | Landaberry, María Victoria | es |
dc.contributor.author | Nakasone, Kenji | es |
dc.contributor.author | Pérez, Johann | es |
dc.contributor.author | Posada, María del Pilar | es |
dc.date.accessioned | 2025-05-16T12:48:42Z | - |
dc.date.available | 2025-05-16T12:48:42Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/4004 | - |
dc.description.abstract | Rating agencies like Moody’s, Standard and Poor’s and Fitch rate sovereign assets based on mathematical analysis of economic, social and political factors and expert judgment. According to the rating, sovereign can be classified as having investment grade or speculative status. Having an investor grade is important as it reduces the cost of financing and expands the pool of potential investors in an economy. In this paper we want to predict whether a sovereign has investment grade status using macroeconomic variables and text analysis variables obtained from the reports issued by Fitch between 2000 and 2018 using natural language processing techniques. We use logistic regression and a series of alternative machine learning algorithms as k-nearest neighbors, support vector machine, classification and decision trees and random forest. According to our results report’s sentiments, captured by the uncertainty index is statistically significant to predict investment grade status. When comparing the different algorithms random forest has the best predictive performance out of sample when the independent variables are referred to the same year and random forest and k-nearest neighbors have the best predictive performance when the independent variables are referred to one year before in terms of f1-score and recall. | es |
dc.language.iso | eng | es |
dc.publisher | Universidad Tecnológica | es |
dc.relation | RePEc:bku:doctra:2022005 | es |
dc.rights | Acceso abierto | * |
dc.subject | Sovereign risk | es |
dc.subject | Rating agencies | es |
dc.subject | Sovereign rating criteria | es |
dc.subject | Macroeconomic variables | es |
dc.subject | Text analysis | es |
dc.subject | Natural language processing | es |
dc.subject | Machine learning | es |
dc.title | A predictive model of sovereign investment grade using machine learning and natural language processing | es |
dc.type | Tesis de maestría | es |
dc.subject.anii | Ciencias Naturales y Exactas | |
dc.subject.anii | Ciencias de la Computación e Información | |
dc.type.version | Aceptado | es |
dc.anii.subjectcompleto | //Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Información | es |
Aparece en las colecciones: | Universidad Tecnológica |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
A predictive model of sovereign investment grade using machine learning and natural language processing. Landaberry, V.; Nakasone, K; Pérez, J; Posada, M..pdf | Descargar | 3.18 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)