Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)-
dc.contributor.advisorPonce, Jorgees
dc.contributor.authorLandaberry, María Victoriaes
dc.contributor.authorNakasone, Kenjies
dc.contributor.authorPérez, Johannes
dc.contributor.authorPosada, María del Pilares
dc.date.accessioned2025-05-16T12:48:42Z-
dc.date.available2025-05-16T12:48:42Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/4004-
dc.description.abstractRating agencies like Moody’s, Standard and Poor’s and Fitch rate sovereign assets based on mathematical analysis of economic, social and political factors and expert judgment. According to the rating, sovereign can be classified as having investment grade or speculative status. Having an investor grade is important as it reduces the cost of financing and expands the pool of potential investors in an economy. In this paper we want to predict whether a sovereign has investment grade status using macroeconomic variables and text analysis variables obtained from the reports issued by Fitch between 2000 and 2018 using natural language processing techniques. We use logistic regression and a series of alternative machine learning algorithms as k-nearest neighbors, support vector machine, classification and decision trees and random forest. According to our results report’s sentiments, captured by the uncertainty index is statistically significant to predict investment grade status. When comparing the different algorithms random forest has the best predictive performance out of sample when the independent variables are referred to the same year and random forest and k-nearest neighbors have the best predictive performance when the independent variables are referred to one year before in terms of f1-score and recall.es
dc.language.isoenges
dc.publisherUniversidad Tecnológicaes
dc.relationRePEc:bku:doctra:2022005es
dc.rightsAcceso abierto*
dc.subjectSovereign riskes
dc.subjectRating agencieses
dc.subjectSovereign rating criteriaes
dc.subjectMacroeconomic variableses
dc.subjectText analysises
dc.subjectNatural language processinges
dc.subjectMachine learninges
dc.titleA predictive model of sovereign investment grade using machine learning and natural language processinges
dc.typeTesis de maestríaes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias de la Computación e Información
dc.type.versionAceptadoes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Informaciónes
Aparece en las colecciones: Universidad Tecnológica

Archivos en este ítem:
archivo  Descripción Tamaño Formato
A predictive model of sovereign investment grade using machine learning and natural language processing. Landaberry, V.; Nakasone, K; Pérez, J; Posada, M..pdfDescargar 3.18 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)