Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)es
dc.contributor.authorRosas, Juan Eduardoes
dc.contributor.authorAle, Lucases
dc.contributor.authorRebollo, Inéses
dc.contributor.authorScheffel, Sheilaes
dc.contributor.authorAguilar, Ignacioes
dc.contributor.authorMolina, Federicoes
dc.contributor.authorPérez, Fernandoes
dc.date.accessioned2021-09-22T13:10:36Z-
dc.date.available2021-09-22T13:10:36Z-
dc.date.issued2020-02-09-
dc.identifier.isbn978-65-00-00331-4-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/451-
dc.description.abstractAs a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.es
dc.description.sponsorshipInstituto Nacional de Investigación Agropecuariaes
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.rightsAcceso abiertoes
dc.subjectbreedinges
dc.subjectMASes
dc.subjectGWASes
dc.subjectGenomic selectiones
dc.titleBoosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approacheses
dc.typeOtroes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias Biológicas
dc.subject.aniiGenética y Herencia
dc.subject.aniiCiencias Agrícolas
dc.subject.aniiBiotecnología Agropecuaria
dc.subject.aniiTecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.
dc.subject.aniiAgricultura, Silvicultura y Pesca
dc.subject.aniiAgronomía, reproducción y protección de plantas
dc.identifier.aniiFSDA_1_2018_1_154120es
dc.anii.institucionresponsableINIAes
dc.identifier.urlhttp://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf-
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias Biológicas/Genética y Herenciaes
dc.anii.subjectcompleto//Ciencias Agrícolas/Biotecnología Agropecuaria/Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.es
dc.anii.subjectcompleto//Ciencias Agrícolas/Agricultura, Silvicultura y Pesca/Agronomía, reproducción y protección de plantases
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
IRTC-2020-Rosas-1-Abstract.pdfDescargar Abstract from ITRC 2020 Proceedings135.91 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)