Título : Framework para la generación automática de logs para el entrenamiento de modelos de aprendizaje automático
Autor(es) : Pisani, Mikaela
Fecha de publicación : ago-2021
Tipo de publicación: Documento de trabajo
Versión: Borrador
Areas del conocimiento : Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Otros descriptores : Detección de ataques
Machine Learning
Web Application Firewalls
Resumen : Los modelos de aprendizaje automático podrían ser de relevancia en la detección de ataques. Pero utilizar este tipo de modelos para la detección de ataques posee ciertos obstáculos. Debido a que los datos de logs generados por los sitios generalmente poseen información privativa, resulta complejo poder obtener datos masivos de estos sitios. A su vez, el conjunto de estos logs que refieran a ataques será reducido. Ante la falta de datos para el entrenamiento de modelos de aprendizaje automático, tanto sobre ataques a sitios, como de tráfico normal, surge la necesidad de poder generar datos que puedan utilizarse como conjunto de entrenamiento. Entonces, se propuso la creación de una plataforma para la generación automática de logs para el entrenamiento de modelos de aprendizaje automático para la detección de ataques. Dicha plataforma genera logs de ataques y de tráfico normal.
URI / Handle: https://hdl.handle.net/20.500.12381/464
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FSDA_1_2018_1_154419, FMV_1_2019_1_155913.
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento 4.0 Internacional. (CC BY)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
Framework para la generación automática de logs para el entrenamiento de modelos de aprendizaje automático.pdfDescargar 287.58 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)