Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento 4.0 Internacional. (CC BY) | es |
dc.contributor.author | Mayr, Franz | es |
dc.contributor.author | Yovine, Sergio | es |
dc.contributor.author | Visca, Ramiro | es |
dc.date.accessioned | 2021-10-07T18:31:53Z | - |
dc.date.available | 2021-10-07T18:31:53Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/466 | - |
dc.description.abstract | We propose a procedure for checking properties of recurrent neural networks without any access to their internal structure nor code. Our approach is a case of black-box checking based on learning a prob- ably approximately correct, regular approximation of the intersection of the language of the black-box (the network) with the complement of the property to be checked, without explicitly building automata-based in- dividual representations of them. When the algorithm returns an empty language, there is a proven upper bound on the probability of the network not verifying the requirement. When the returned language is nonempty, it is certain the network does not satisfy the property. In this case, a regular language approximating the intersection is output together with true sequences of the network violating the property. We show that this approach offers better guarantees than post-learning verification where the property is checked on a learned model of the network alone. Be- sides, it does not require resorting to an external decision procedure for verification nor fixing a specific requirement specification formalism. | es |
dc.description.sponsorship | Agencia Nacional de Investigación e Innovación | es |
dc.language.iso | eng | es |
dc.rights | Acceso abierto | es |
dc.source | Machine Learning and Knowledge Extraction - International Cross-Domain Conference, CD-MAKE 2020 | es |
dc.subject | Artificial intelligence | es |
dc.subject | Recurrent neural networks | es |
dc.subject | Verification | es |
dc.title | On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks | es |
dc.type | Documento de conferencia | es |
dc.subject.anii | Ciencias Naturales y Exactas | |
dc.subject.anii | Ciencias de la Computación e Información | |
dc.identifier.anii | POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913. | es |
dc.type.version | Enviado | es |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-57321-8_19 | - |
dc.anii.subjectcompleto | //Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Información | es |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
On_the_fly_Verification_of_Recurrent_Neural_Networks_through_Automata_Learning.pdf | Descargar | 470.86 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento 4.0 Internacional. (CC BY)