Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)es
dc.contributor.authorMayr, Franzes
dc.contributor.authorYovine, Sergioes
dc.contributor.authorVisca, Ramiroes
dc.date.accessioned2021-10-07T18:31:53Z-
dc.date.available2021-10-07T18:31:53Z-
dc.date.issued2020-08-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/466-
dc.description.abstractWe propose a procedure for checking properties of recurrent neural networks without any access to their internal structure nor code. Our approach is a case of black-box checking based on learning a prob- ably approximately correct, regular approximation of the intersection of the language of the black-box (the network) with the complement of the property to be checked, without explicitly building automata-based in- dividual representations of them. When the algorithm returns an empty language, there is a proven upper bound on the probability of the network not verifying the requirement. When the returned language is nonempty, it is certain the network does not satisfy the property. In this case, a regular language approximating the intersection is output together with true sequences of the network violating the property. We show that this approach offers better guarantees than post-learning verification where the property is checked on a learned model of the network alone. Be- sides, it does not require resorting to an external decision procedure for verification nor fixing a specific requirement specification formalism.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.rightsAcceso abiertoes
dc.sourceMachine Learning and Knowledge Extraction - International Cross-Domain Conference, CD-MAKE 2020es
dc.subjectArtificial intelligencees
dc.subjectRecurrent neural networkses
dc.subjectVerificationes
dc.titleOn-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networkses
dc.typeDocumento de conferenciaes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias de la Computación e Información
dc.identifier.aniiPOS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.es
dc.type.versionEnviadoes
dc.identifier.doihttps://doi.org/10.1007/978-3-030-57321-8_19-
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Informaciónes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
On_the_fly_Verification_of_Recurrent_Neural_Networks_through_Automata_Learning.pdfDescargar 470.86 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)