Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)es
dc.contributor.authorNakahira, Yoriees
dc.contributor.authorFerragut, Andreses
dc.contributor.authorWierman, Adames
dc.date.accessioned2021-10-15T13:48:39Z-
dc.date.available2021-10-15T13:48:39Z-
dc.date.issued2021-10-13-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/469-
dc.description.abstractMany modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, unpredictability and instability in service capacity often incur operational and infrastructural costs. In this paper, we seek to characterize optimal distributed algorithms that maximize the predictability, stability, or both when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes both the stationary mean and variance of the service capacity subject to strict demand and deadline requirements. For more general settings, we characterize the minimal-variance distributed policies with soft demand requirements, soft deadline requirements, or both. The performance of the optimal distributed policies is compared to that of the optimal centralized policy by deriving closed-form bounds and by testing centralized and distributed algorithms using real data from the Caltech electrical vehicle charging facility and many pieces of synthetic data from different arrival distribution. Moreover, we derive the Pareto-optimality condition for distributed policies that balance the variance and mean square of the service capacity. Finally, we discuss a scalable partially-centralized algorithm that uses centralized information to boost performance and a method to deal with missing information on service requirements.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.publisherINFORMSes
dc.rightsAcceso abiertoes
dc.sourceOperations Researches
dc.subjectOnline schedulinges
dc.titleGeneralized Exact Scheduling: a Minimal-Variance Distributed Deadline SchedulerGeneralized Exact Scheduling: a Minimal-Variance Distributed Deadline Scheduleres
dc.typeArtículoes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiMatemáticas
dc.subject.aniiMatemática Aplicada
dc.identifier.aniiFSE_1_2018_1_153050es
dc.type.versionAceptadoes
dc.anii.institucionresponsableUniversidad ORT Uruguayes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Matemáticas/Matemática Aplicadaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
main.pdfDescargar 1.34 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)