Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)es
dc.contributor.authorTrajtenberg, Felipees
dc.contributor.authorBuschiazzo, Alejandroes
dc.date.accessioned2022-07-01T14:02:33Z-
dc.date.available2022-07-01T14:02:33Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/602-
dc.description.abstractThe ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signalling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two- component systems, important signalling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine-kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein:protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine-kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator’s allosteric changes, the phosphoryl-transfer flow during the signalling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.publisherSpringer Nature (Humana Press)es
dc.relationhttps://hdl.handle.net/20.500.12381/603-
dc.relationhttps://hdl.handle.net/20.500.12381/604-
dc.rightsAcceso abiertoes
dc.sourceHistidine Phosphorylation - Methods and Protocolses
dc.subjectseñalización bacterianaes
dc.subjectFosforilación de proteínases
dc.subjectAlosterismoes
dc.subjectHistidin-quinasaes
dc.subjectRegulador de respuestaes
dc.titleProtein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systemses
dc.typeParte de libroes
dc.subject.aniiCiencias Naturales y Exactas-
dc.subject.aniiCiencias Biológicas-
dc.subject.aniiBioquímica y Biología Molecular-
dc.identifier.aniiFCE_1_2017_1_136291es
dc.type.versionAceptadoes
dc.identifier.doi10.1007/978-1-4939-9884-5_1-
dc.anii.institucionresponsableInstitut Pasteur de Montevideoes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias Biológicas/Bioquímica y Biología Moleculares
Aparece en las colecciones: Institut Pasteur de Montevideo

Archivos en este ítem:
archivo  Descripción Tamaño Formato
Buschiazzo_MiMB18_final.pdfDescargar Methods in Molecular Biology 20202.5 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)