Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)es
dc.contributor.authorCancela, Héctores
dc.contributor.authorMurray, Lesliees
dc.contributor.authorRobledo, Francoes
dc.contributor.authorRomero, Pabloes
dc.contributor.authorSartor, Pabloes
dc.date.accessioned2022-10-17T13:33:01Z-
dc.date.available2022-10-17T13:33:01Z-
dc.date.issued2021-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/645-
dc.description.abstractA stochastic binary system is a multi-component on-off system subject to random independent failures on its components. After potential failures, the state of the subsystem is ruled by a logical function (called structure function) that determines whether the system is operational or not. Stochastic binary systems (SBS) serve as a natural generalization of network reliability analysis, where the goal is to find the probability of correct operation of the system (in terms of connectivity, network diameter or different measures of success). A particular subclass of interest is stochastic monotone binary systems (SMBS), which are characterized by non-decreasing structure. We explore the combinatorics of SBS, which provide building blocks for system reliability estimation, looking at minimal non-operational subsystems, called mincuts. One key concept to understand the underlying combinatorics of SBS is duality. As methods for exact evaluation take exponential time, we discuss the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo method for estimating the reliability polynomial for homogeneous SBS, the Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient determination of mincuts, and three additional methods that combine in different ways the well--known techniques of Permutation Monte Carlo and Splitting. These last three methods are based on a stochastic process called Creation Process, a temporal evolution of the SBS which is static by definition. All the methods are compared using different topologies, showing large efficiency gains over the basic Monte Carlo scheme.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.description.sponsorshipMath-AMSUDes
dc.language.isoenges
dc.publisherWileyes
dc.relationhttps://doi.org/10.1111/itor.13034es
dc.rightsAcceso abiertoes
dc.sourceInternational Transactions in Operations Researches
dc.subjectSystem Reliabilityes
dc.subjectStochastic Binary Systemses
dc.subjectPermutation Monte Carloes
dc.subjectSplittinges
dc.subjectDualityes
dc.titleOn the Reliability Estimation of Stochastic Binary Systemes
dc.typeArtículoes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias de la Computación e Información
dc.subject.aniiMatemáticas
dc.subject.aniiEstadística y Probabilidad
dc.identifier.aniiFCE_1_2019_1_156693es
dc.type.versionEnviadoes
dc.anii.institucionresponsableUniversidad de la Repúblicaes
dc.anii.institucionresponsableUniversidad Nacional de Rosarioes
dc.anii.institucionresponsableUniversidad de Montevideoes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Informaciónes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Matemáticas/Estadística y Probabilidades
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
ITOR_v7.pdfDescargar borrador enviado381.73 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)