Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento 4.0 Internacional. (CC BY) | es |
dc.contributor.author | Rudeli, Natalia | es |
dc.contributor.author | Santilli, Adrián | es |
dc.contributor.author | Puente, I. | es |
dc.contributor.author | Viles, Elisabeth | es |
dc.date.accessioned | 2019-12-24T14:52:50Z | - |
dc.date.available | 2019-12-24T14:52:50Z | - |
dc.date.issued | 2017-08-08 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12381/213 | - |
dc.description.abstract | There are often considerable differences between the planned schedule for a construction project and what later develops during actual construction. This paper introduces an innovativeapproach that uses MarkovChain models to support predictions during earned value analyses. A statistical model was developed to predict possible deviations in a project schedule and the future progress of a project. This model, based on Markov chains, uses data from the past to adjust future predictions. A case study was built from a database of 90 housing cooperative construction projects and was validated in 12 more projects. A cross validation of three interactions was also carried out, obtaininganerror of 2.38% inthe prediction offuture progressandanerror of 4.29% intheprediction of construction timing.Theinnovative prediction model presented in this paper contributes to the management body of knowledge by introducing a new tool for the management and control of construction timing. The method presented improves construction management because it predicts future deviations in scheduleswithreducederrorsanddeterminestotaldeviationfromaconstructionschedulewithgreatprecision.Thisallowsbettercontroloverwork timing and represents important input in determining strategies and future actions. | es |
dc.description.sponsorship | Agencia Nacional de Investigación e Innovación | es |
dc.language.iso | spa | es |
dc.publisher | American Society of Civil Engineers | es |
dc.rights | Acceso abierto | - |
dc.source | Journal of Construction Engineering and Management. 2017; 143(11) | es |
dc.subject | Prediction | es |
dc.subject | Schedule | es |
dc.subject | Earned schedule | es |
dc.subject | Earned value management | es |
dc.subject | Cost and schedule | es |
dc.title | Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database | es |
dc.type | Artículo | es |
dc.subject.anii | Ingeniería y Tecnología | es |
dc.subject.anii | Ingeniería Civil | es |
dc.subject.anii | Ingeniería de la Construcción | es |
dc.identifier.anii | POS_EXT_2016 _1_134047 | es |
dc.type.version | Publicado | es |
dc.anii.institucionresponsable | Universidad de Navarra | es |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Rudeli et al. (2017).pdf | Descargar | Rudeli et al. (2017) | 253.51 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento 4.0 Internacional. (CC BY)