Título : | Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database |
Autor(es) : | Rudeli, Natalia Santilli, Adrián Puente, I. Viles, Elisabeth |
Fecha de publicación : | 8-ago-2017 |
Tipo de publicación: | Artículo |
Versión: | Publicado |
Publicado por: | American Society of Civil Engineers |
Publicado en: | Journal of Construction Engineering and Management. 2017; 143(11) |
Areas del conocimiento : | Ingeniería y Tecnología Ingeniería Civil Ingeniería de la Construcción |
Otros descriptores : | Prediction Schedule Earned schedule Earned value management Cost and schedule |
Resumen : | There are often considerable differences between the planned schedule for a construction project and what later develops during actual construction. This paper introduces an innovativeapproach that uses MarkovChain models to support predictions during earned value analyses. A statistical model was developed to predict possible deviations in a project schedule and the future progress of a project. This model, based on Markov chains, uses data from the past to adjust future predictions. A case study was built from a database of 90 housing cooperative construction projects and was validated in 12 more projects. A cross validation of three interactions was also carried out, obtaininganerror of 2.38% inthe prediction offuture progressandanerror of 4.29% intheprediction of construction timing.Theinnovative prediction model presented in this paper contributes to the management body of knowledge by introducing a new tool for the management and control of construction timing. The method presented improves construction management because it predicts future deviations in scheduleswithreducederrorsanddeterminestotaldeviationfromaconstructionschedulewithgreatprecision.Thisallowsbettercontroloverwork timing and represents important input in determining strategies and future actions. |
URI / Handle: | http://hdl.handle.net/20.500.12381/213 |
Institución responsable del proyecto: | Universidad de Navarra |
Financiadores: | Agencia Nacional de Investigación e Innovación |
Identificador ANII: | POS_EXT_2016 _1_134047 |
Nivel de Acceso: | Acceso abierto |
Licencia CC: | Reconocimiento 4.0 Internacional. (CC BY) |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Rudeli et al. (2017).pdf | Descargar | Rudeli et al. (2017) | 253.51 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento 4.0 Internacional. (CC BY)