Título : Machine learning in healthcare toward early risk prediction: A case study of liver transplantation
Autor(es) : Chatterjee, Parag
Noceti, Ofelia
Menéndez, Josemaría
Gerona, Solange
Toribio, Melina
Cymberknop, Leandro
Armentano, Ricardo
Fecha de publicación : 2020
Tipo de publicación: Parte de libro
Versión: Publicado
Publicado por: Academic Press
Publicado en: Data Analytics in Biomedical Engineering and Healthcare
Areas del conocimiento : Ciencias Médicas y de la Salud
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ingeniería y Tecnología
Otros descriptores : Artificial intelligence
Machine learning
eHealth
Data analytics
Predictive analytics
Transplantation
Liver
Cardiometabolic
Vascular age
Resumen : Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks.
URI / Handle: https://hdl.handle.net/20.500.12381/287
DOI: 10.1016/B978-0-12-819314-3.00004-5
ISBN: 978-0-12-819314-3
URL : https://www.sciencedirect.com/science/article/pii/B9780128193143000045
Institución responsable del proyecto: Universidad de la República, Uruguay
Financiadores: Agencia Nacional de Investigación e Innovación (ANII), Uruguay
Universidad Tecnológica Nacional, Buenos Aires, Argentina
Universidad de la República, Uruguay
Identificador ANII: FSDA_1_2017_1_143653
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
Book Chapter.pdfDescargar Chapter 4. Data Analytics in Biomedical Engineering and Healthcare. Elsevier3.53 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)