Título : | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
Autor(es) : | Chatterjee, Parag Noceti, Ofelia Menéndez, Josemaría Gerona, Solange Toribio, Melina Cymberknop, Leandro Armentano, Ricardo |
Fecha de publicación : | 2020 |
Tipo de publicación: | Parte de libro |
Versión: | Publicado |
Publicado por: | Academic Press |
Publicado en: | Data Analytics in Biomedical Engineering and Healthcare |
Areas del conocimiento : | Ciencias Médicas y de la Salud Ciencias Naturales y Exactas Ciencias de la Computación e Información Ingeniería y Tecnología |
Otros descriptores : | Artificial intelligence Machine learning eHealth Data analytics Predictive analytics Transplantation Liver Cardiometabolic Vascular age |
Resumen : | Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks. |
URI / Handle: | https://hdl.handle.net/20.500.12381/287 |
DOI: | 10.1016/B978-0-12-819314-3.00004-5 |
ISBN: | 978-0-12-819314-3 |
URL : | https://www.sciencedirect.com/science/article/pii/B9780128193143000045 |
Institución responsable del proyecto: | Universidad de la República, Uruguay |
Financiadores: | Agencia Nacional de Investigación e Innovación (ANII), Uruguay Universidad Tecnológica Nacional, Buenos Aires, Argentina Universidad de la República, Uruguay |
Identificador ANII: | FSDA_1_2017_1_143653 |
Nivel de Acceso: | Acceso abierto |
Licencia CC: | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Book Chapter.pdf | Descargar | Chapter 4. Data Analytics in Biomedical Engineering and Healthcare. Elsevier | 3.53 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)