Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC) | - |
dc.contributor.author | Alvarez-Castro, Ignacio | es |
dc.date.accessioned | 2024-04-10T14:37:41Z | - |
dc.date.available | 2024-04-10T14:37:41Z | - |
dc.date.issued | 2023-11-09 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/3492 | - |
dc.description.abstract | Plan Ceibal is a public policy implemented in Uruguay, it is part of the global initiative One Lap- top per Child (OLPC, 2005). The basic feature is providing every student and teacher in primary school with a laptop or tablet and internet access. Different data sets were combined, students and teachers activities registered in the Learning Management System (LMS) and student’s performance in national standardized tests. Data were used to compute student’s engagement indexes, combining motivation, creativity, velocity and performance. Statistical models were used to determine key drivers of LMS use, this is relevant to define educational policies based on evidence. Models for LMS use are fitted for several regional levels. Additionally, statistical learning methods were fitted to predict student’s performance in national standardized test us- ing as predictor variables different constructed usage indexes from the LMS platform. A major challenge was how to deal with sub-grouping data structure into machine learning algorithms, usually developed for independent observations. Initial results suggest school district is the main driver of the technology usage in the classroom. | es |
dc.description.sponsorship | ANII | es |
dc.language.iso | eng | es |
dc.publisher | International Conference on Data Science 2023 | es |
dc.rights | Acceso abierto | * |
dc.source | https://icds2023.cl/wp-content/uploads/2023/11/BoA_ICDS2023.pdf | es |
dc.subject | Educational data science | es |
dc.subject | Learming managment system | es |
dc.subject | Statistical learning methods | es |
dc.title | Student performance predictive models using LMS data in Primary Schools | es |
dc.type | Documento de conferencia | es |
dc.subject.anii | Ciencias Sociales | |
dc.subject.anii | Ciencias de la Educación | |
dc.identifier.anii | FSDE_2_2020_1_163528 | es |
dc.type.version | Publicado | es |
dc.anii.institucionresponsable | Facultad de Ciencias Económicas y de Administración | es |
dc.anii.institucionresponsable | Instituto de Estadistica | es |
dc.anii.institucionresponsable | Universidad de la República | es |
dc.anii.institucionresponsable | Agencia Nacional de Investigación e Innovación | es |
dc.anii.institucionresponsable | Fundación Ceibal | es |
dc.anii.subjectcompleto | //Ciencias Sociales/Ciencias de la Educación | es |
dc.ceibal.researchline | Monitoreo y evaluación | es |
dc.ceibal.researchtema | Evaluación del aprendizaje y la enseñanza en contextos mediados por tecnologías | es |
Aparece en las colecciones: | Fundación Ceibal |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CEI_IDSC_23.pdf | Descargar | Presentación realizada en la International Conference on Data Science 2023, Santiago de Chile | 462.85 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)