Título : | Process and Organizational Data Integration from BPMS and Relational/NoSQL Sources for Process Mining |
Autor(es) : | Delgado, Andrea Calegari, Daniel |
Fecha de publicación : | 2022 |
Tipo de publicación: | Documento de conferencia |
Versión: | Publicado |
Publicado en: | 17th International Conference on Software Technologies (ICSOFT), Lisboa, Portugal, 11 al 13 de Julio 2022 |
Areas del conocimiento : | Ciencias Naturales y Exactas Ciencias de la Computación e Información Ciencias de la Computación |
Otros descriptores : | Process mining Data science Process and Ooganizational data integration Process improvement |
Resumen : | Business Process execution analysis is crucial for organizations to evaluate and improve them. Process mining provides the means to do so, but several challenges arise when dealing with data extraction and integration. Most scenarios consider implicit processes in support systems, with the process and organizational data being analyzed separately. Nowadays, many organizations increasingly integrate process-oriented support systems, such as BPMS, where process data execution is registered within the process engine database and organizational data in distributed potentially heterogeneous databases. They can follow the relational model or NoSQL ones, and organizational data can come from different systems, services, social media, or several other sources. Then, process and organizational data must be integrated to be used as input for process mining tasks and provide a complete view of the operation to detect and make improvements. In this paper, we extend previous work to support the c ollection of process and organizational data from heterogeneous sources, the integration of these data, and the automated generation of XES event logs to be used as input for process mining. |
URI / Handle: | https://hdl.handle.net/20.500.12381/3700 |
Recursos relacionados en REDI: | https://hdl.handle.net/20.500.12381/3701 https://hdl.handle.net/20.500.12381/3702 https://hdl.handle.net/20.500.12381/3703 https://hdl.handle.net/20.500.12381/3704 |
Otros recursos relacionados: | https://doi.org/10.5220/0011322500003266 |
Institución responsable del proyecto: | Universidad de la República. Facultad de Ingeniería. Instituto de Computación |
Financiadores: | Agencia Nacional de Investigación e Innovación |
Identificador ANII: | FMV_1_2021_1_167483 |
Nivel de Acceso: | Acceso restringido |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ICSOFT_2022_98_CR.pdf Acceso restringido | Descargar Solicitar una copia | versión CRC del paper | 1.77 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: