Título : | Adding the Sustainability Dimension in Process Mining Discovery Algorithms Evaluation |
Autor(es) : | Delgado, Andrea García, Félix Moraga, María de los Ángeles Calegari, Daniel Gordillo, Alberto Peña, Leonel |
Fecha de publicación : | 2023 |
Tipo de publicación: | Documento de conferencia |
Versión: | Publicado |
Publicado en: | 21st International Conference on Business Process Management (BPM), Utrech, The Netherlands, 11 al 15 de Setiembre 2023 |
Areas del conocimiento : | Ciencias Naturales y Exactas Ciencias de la Computación e Información Ciencias de la Computación |
Otros descriptores : | Sustainability Green BPM Process mining Discovery algorithms Energy efficiency |
Resumen : | Sustainability has captured the attention of the classical management of business processes. Organizations have become increasingly aware of the need to achieve information technology (IT)-enabled business processes that are successful in their economy and ecological and social impact. In this context, Green BPM concerns business processes’ modeling, deployment, optimization, and management with dedicated consideration for environmental consequences. Automated process discovery is a crucial process mining task to help organizations to get knowledge of the process they carry out in their daily operation, providing the basis for insights and evidence-based improvement decisions. Several process discovery algorithms have been developed and evaluated by the classical measures on resulting models, such as fitness, precision, f-score, soundness, complexity (size, structuredness, and control-flow complexity), generalization, and the execution time of the algorithm. Within the context of automated process discovery, sustainability adds a new indicator: energy efficiency. This paper extends a well-known benchmark for evaluating automated process discovery methods, measuring the energy efficiency of selected discovery methods with the same publicly available dataset. The expected contribution is to raise more awareness among the developers of process discovery methods about the energy impact of their solutions beyond the more traditional well-known measures. |
URI / Handle: | https://hdl.handle.net/20.500.12381/3701 |
Recursos relacionados en REDI: | https://hdl.handle.net/20.500.12381/3702 https://hdl.handle.net/20.500.12381/3703 https://hdl.handle.net/20.500.12381/3700 https://hdl.handle.net/20.500.12381/3704 |
Otros recursos relacionados: | https://doi.org/10.1007/978-3-031-41623-1_10 |
Institución responsable del proyecto: | Universidad de la República. Facultad de Ingeniería. Instituto de Computación |
Financiadores: | Agencia Nacional de Investigación e Innovación |
Identificador ANII: | FMV_1_2021_1_167483 |
Nivel de Acceso: | Acceso restringido |
Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
BPM2023__Sustainability_dimension_in_Process_Mining_discovery_algorithms_evaluation.pdf Acceso restringido | Descargar Solicitar una copia | versión CRC del paper | 637.92 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: