Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDelgado, Andreaes
dc.contributor.authorGarcía, Félixes
dc.contributor.authorMoraga, María de los Ángeleses
dc.contributor.authorCalegari, Danieles
dc.contributor.authorGordillo, Albertoes
dc.contributor.authorPeña, Leoneles
dc.date.accessioned2024-11-22T16:46:26Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/3701-
dc.description.abstractSustainability has captured the attention of the classical management of business processes. Organizations have become increasingly aware of the need to achieve information technology (IT)-enabled business processes that are successful in their economy and ecological and social impact. In this context, Green BPM concerns business processes’ modeling, deployment, optimization, and management with dedicated consideration for environmental consequences. Automated process discovery is a crucial process mining task to help organizations to get knowledge of the process they carry out in their daily operation, providing the basis for insights and evidence-based improvement decisions. Several process discovery algorithms have been developed and evaluated by the classical measures on resulting models, such as fitness, precision, f-score, soundness, complexity (size, structuredness, and control-flow complexity), generalization, and the execution time of the algorithm. Within the context of automated process discovery, sustainability adds a new indicator: energy efficiency. This paper extends a well-known benchmark for evaluating automated process discovery methods, measuring the energy efficiency of selected discovery methods with the same publicly available dataset. The expected contribution is to raise more awareness among the developers of process discovery methods about the energy impact of their solutions beyond the more traditional well-known measures.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.relationhttps://doi.org/10.1007/978-3-031-41623-1_10es
dc.rightsAcceso restringido*
dc.source21st International Conference on Business Process Management (BPM), Utrech, The Netherlands, 11 al 15 de Setiembre 2023es
dc.subjectSustainabilityes
dc.subjectGreen BPMes
dc.subjectProcess mininges
dc.subjectDiscovery algorithmses
dc.subjectEnergy efficiencyes
dc.titleAdding the Sustainability Dimension in Process Mining Discovery Algorithms Evaluationes
dc.typeDocumento de conferenciaes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias de la Computación e Información
dc.subject.aniiCiencias de la Computación
dc.identifier.aniiFMV_1_2021_1_167483es
dc.type.versionPublicadoes
dc.rights.embargoreasonEs publicado por Springer Nature con copyright de cesión de derechos enviados para su publicación*
dc.anii.institucionresponsableUniversidad de la República. Facultad de Ingeniería. Instituto de Computaciónes
dc.rights.embargoterm9999-01-01*
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computaciónes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
BPM2023__Sustainability_dimension_in_Process_Mining_discovery_algorithms_evaluation.pdf
Acceso restringido
Descargar  Solicitar una copiaversión CRC del paper637.92 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: