Título : Adding the Sustainability Dimension in Process Mining Discovery Algorithms Evaluation
Autor(es) : Delgado, Andrea
García, Félix
Moraga, María de los Ángeles
Calegari, Daniel
Gordillo, Alberto
Peña, Leonel
Fecha de publicación : 2023
Tipo de publicación: Documento de conferencia
Versión: Publicado
Publicado en: 21st International Conference on Business Process Management (BPM), Utrech, The Netherlands, 11 al 15 de Setiembre 2023
Areas del conocimiento : Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ciencias de la Computación
Otros descriptores : Sustainability
Green BPM
Process mining
Discovery algorithms
Energy efficiency
Resumen : Sustainability has captured the attention of the classical management of business processes. Organizations have become increasingly aware of the need to achieve information technology (IT)-enabled business processes that are successful in their economy and ecological and social impact. In this context, Green BPM concerns business processes’ modeling, deployment, optimization, and management with dedicated consideration for environmental consequences. Automated process discovery is a crucial process mining task to help organizations to get knowledge of the process they carry out in their daily operation, providing the basis for insights and evidence-based improvement decisions. Several process discovery algorithms have been developed and evaluated by the classical measures on resulting models, such as fitness, precision, f-score, soundness, complexity (size, structuredness, and control-flow complexity), generalization, and the execution time of the algorithm. Within the context of automated process discovery, sustainability adds a new indicator: energy efficiency. This paper extends a well-known benchmark for evaluating automated process discovery methods, measuring the energy efficiency of selected discovery methods with the same publicly available dataset. The expected contribution is to raise more awareness among the developers of process discovery methods about the energy impact of their solutions beyond the more traditional well-known measures.
URI / Handle: https://hdl.handle.net/20.500.12381/3701
Otros recursos relacionados: https://doi.org/10.1007/978-3-031-41623-1_10
Institución responsable del proyecto: Universidad de la República. Facultad de Ingeniería. Instituto de Computación
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FMV_1_2021_1_167483
Nivel de Acceso: Acceso restringido
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
BPM2023__Sustainability_dimension_in_Process_Mining_discovery_algorithms_evaluation.pdf
Acceso restringido
Descargar  Solicitar una copiaversión CRC del paper637.92 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: