Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)-
dc.contributor.authorCastelli, Rafaeles
dc.contributor.authorGonzález, Tomáses
dc.contributor.authorTorrado, Rodrigoes
dc.contributor.authorMartín, Álvaroes
dc.contributor.authorDufort y Álvarez, Guillermoes
dc.date.accessioned2025-04-16T15:54:12Z-
dc.date.available2025-04-16T15:54:12Z-
dc.date.issued2024-08-23-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/3931-
dc.description.abstractNanopore sequencing has emerged as a crucial component in the arsenal of genomic technologies, with advances from Oxford Nanopore Technologies (ONT) progressively reducing the costs of DNA sequencing. An ONT nanopore sequencer operates by guiding DNA fragments through a nanopore, partially blocking a flow of electrical current, which is sampled over time. This variation in current is registered as a raw signal, and it allows for the translation of electrical signals into a DNA sequence, a process known as basecalling. As the available algorithms for basecalling continually evolve, it is preferable to retain the raw signal data for future re-analysis. However, the volumes of raw data are massive, being nearly ten times larger than the size of data after basecalling in FASTQ format. Therefore, efficient lossless compression algorithms for raw signals are needed to reduce storage and transmission costs. While recent research has focused on studying nanopore FASTQ data, a thorough study of the methods used in practice for the compression of raw data, such as the state-of-the-art compression algorithm VBZ, is still missing in the scientific literature. In this sense, in this work, we aim to elucidate the mechanisms behind the efficiency of VBZ and introduce a set of variations that further improve its compression performance. Our findings indicate that we can enhance the performance of VBZ by an average of 2.42%, with gains increasing to 3.02% for the latest nanopore flowcells (10.x), using comparable computational resources.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.relation.urihttps://hdl.handle.net/20.500.12381/3930-
dc.rightsAcceso abierto*
dc.source11th International Conference, IWBBIO 2024, Meloneras, Gran Canaria, Spain, July 15–17, 2024es
dc.subjectSecuenciación por nanoporoses
dc.subjectCompresión de datoses
dc.subjectSeñales crudas de nanorporoses
dc.subjectSecuenciación de ADNes
dc.titleLossless Compression of Nanopore Sequencing Raw Signalses
dc.typeDocumento de conferenciaes
dc.subject.aniiCiencias Naturales y Exactas-
dc.subject.aniiCiencias de la Computación e Información-
dc.subject.aniiCiencias de la Información y Bioinformática-
dc.identifier.aniiFMV_3_2022_1_172797es
dc.type.versionPublicadoes
dc.identifier.doihttps://doi.org/10.1007/978-3-031-64629-4_10-
dc.anii.institucionresponsableUniversidad de la Repúblicaes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Información y Bioinformáticaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
Nanopore_IWBBIO-13.pdfDescargar 578.24 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)