Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento 4.0 Internacional. (CC BY)-
dc.contributor.advisorOmmen, Danica M.es
dc.contributor.authorVeneri Guarch, Federico A.es
dc.date.accessioned2025-06-03T14:39:16Z-
dc.date.available2025-06-03T14:39:16Z-
dc.date.issued2024-12-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/4051-
dc.description.abstractThis dissertation addresses source attribution problems, an inferential task that contrasts two opposing propositions regarding the origin of items. These inferential problems arise in multiple domains but play a key role in forensic science. Due to the complexity of evidence found in practical applications, machine learning has been proposed as an alternative to evaluate the similarity between items when a probabilistic model is not feasible to construct a traditional Likelihood ratio. Score-based likelihood ratio inference hence provides an alternative framework to assess the strength of statistical evidence in this context. Our work focuses on the common and specific source inferential problems and addresses the dependence structure generated when creating training and estimation sets to develop these inferential systems. We present resampling plans to remedy these shortcomings and how ensemble learning approaches could strengthen the current methods. Chapter 2 introduces Strong Source Resampling (SSR), a source-aware resampling plan for the common source problem. This idea is extended to Weak Source Resampling (WSR) in Chapter 4. These resampling plans are the basis for developing base systems combined into a final value of evidence using an ensemble learning approach proposed in Chapter 2. Chapter 3 focuses on the specific source problem, introducing synthetic source anchoring, which uses synthetic items as data augmentation, allowing the development of specific source score likelihood ratios. Lastly, Chapter 4 introduces discrepancy metrics for score likelihood ratio-based inference that can be used to study model misspecification and the effects of not accounting for dependence. Simulation results and applications in both chapters suggest that combining ensemble learning with a source-aware resampling could provide stronger, more stable statistical evidence value in the correct direction for machine learning and simple score-based likelihood ratios. Chapter 5 provides general conclusions and some avenues for further researches
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.description.sponsorshipBecas de Posgrado Fulbrightes
dc.language.isoenges
dc.publisherIowa State Universityes
dc.relationhttps://dr.lib.iastate.edu/handle/20.500.12876/dv6lp7Xzes
dc.rightsAcceso abierto*
dc.subjectCommon source problemes
dc.subjectForensic Statisticses
dc.subjectScore Likelihood Ratioses
dc.subjectSource attributiones
dc.subjectSpecific source problemes
dc.titleResampling methods for score likelihood ratio based inference for source attribution problemses
dc.typeTesis de doctoradoes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiMatemáticas
dc.subject.aniiEstadística y Probabilidad
dc.subject.aniiMatemática Aplicada
dc.identifier.aniiPOS_FUL_2019_1_1008440es
dc.type.versionPublicadoes
dc.identifier.doihttps://doi.org/10.31274/td-20250502-145-
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Matemáticas/Estadística y Probabilidades
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Matemáticas/Matemática Aplicadaes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
VeneriGuarch_iastate_0097E_21857-1-2.pdfDescargar 11.06 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)