Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | Reconocimiento 4.0 Internacional. (CC BY) | - |
dc.contributor.author | Rolando, Matías | es |
dc.contributor.author | Raggio, Victor | es |
dc.contributor.author | Naya, Hugo | es |
dc.contributor.author | Cagnina, Leticia | es |
dc.contributor.author | Spangenberg, Lucía | es |
dc.date.accessioned | 2025-06-11T17:24:40Z | - |
dc.date.available | 2025-06-11T17:24:40Z | - |
dc.date.issued | 2025-02 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12381/4061 | - |
dc.description.abstract | Rare diseases (RDs) are a group of pathologies that individually affect less than 1 in 2000 people but collectively impact around 7% of the world's population. Most of them affect children, are chronic and progressive, and have no specific treatment. RD patients face diagnostic challenges, with an average diagnosis time of 5 years, multiple specialist visits, and invasive procedures. This 'diagnostic odyssey' can be detrimental to their health. Machine learning (ML) has the potential to improve healthcare by providing more personalized and accurate patient management, diagnoses, and in some cases, treatments. Leveraging the MIMIC-III database and additional medical notes from different sources such as in-house data, PubMed and chatGPT, we propose a labeled dataset for early RD detection in hospital settings. Applying various supervised ML methods, including logistic regression, decision trees, support vector machine (SVM), deep learning methods (LSTM and CNN), and Transformers (BERT), we validated the use of the proposed resource, achieving 92.7% F-measure and a 96% AUC using SVM. These findings highlight the potential of ML in redirecting RD patients towards more accurate diagnostic pathways and presents a corpus that can be used for future development and refinements. | es |
dc.description.sponsorship | Agencia Nacional de Investigación e Innovación | es |
dc.language.iso | eng | es |
dc.publisher | Nature Portfolio | es |
dc.rights | Acceso abierto | * |
dc.source | Scientific Reports | es |
dc.subject | aprendizaje automático | es |
dc.subject | historias clínicas | es |
dc.title | A labeled medical records corpus for the timely detection of rare diseases using machine learning approaches | es |
dc.type | Artículo | es |
dc.subject.anii | Ciencias Naturales y Exactas | |
dc.subject.anii | Ciencias de la Computación e Información | |
dc.subject.anii | Ciencias de la Información y Bioinformática | |
dc.identifier.anii | FSS_X_2022_1_173209 | es |
dc.type.version | Publicado | es |
dc.identifier.doi | 10.1038/s41598-025-90450-0 | - |
dc.anii.institucionresponsable | Institut Pasteur de Montevideo | es |
dc.anii.subjectcompleto | //Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Información y Bioinformática | es |
Aparece en las colecciones: | Institut Pasteur de Montevideo |
Archivos en este ítem:
archivo | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
41598_2025_Article_90450.pdf | Descargar | articulo | 1.5 MB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
Reconocimiento 4.0 Internacional. (CC BY)