Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licenseReconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)es
dc.contributor.authorMayr, Franzes
dc.contributor.authorVisca, Ramiroes
dc.contributor.authorYovine, Sergioes
dc.date.accessioned2021-09-30T13:27:31Z-
dc.date.available2021-09-30T13:27:31Z-
dc.date.issued2020-08-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/458-
dc.description.abstractWe propose a procedure for checking properties of recurrent neural networks used for language modeling and sequence classification. Our approach is a case of black-box checking based on learning a prob- ably approximately correct, regular approximation of the intersection of the language of the black-box (the network) with the complement of the property to be checked, without explicitly building individual represen- tations of them. When the algorithm returns an empty language, there is a proven upper bound on the probability of the network not verifying the requirement. When the returned language is nonempty, it is certain the network does not satisfy the property. In this case, an explicit and inter- pretable characterization of the error is output together with sequences of the network truly violating the property. Besides, our approach does not require resorting to an external decision procedure for verification nor fixing a specific property specification formalism.es
dc.language.isoenges
dc.rightsAcceso abiertoes
dc.sourceMachine Learning and Knowledge Extraction - International Cross-Domain Con- ference, CD-MAKE 2020es
dc.subjectArtificial intelligencees
dc.subjectMachine Learninges
dc.subjectVerificationes
dc.titleProperty Checking with Interpretable Error Characterization for Recurrent Neural Networkses
dc.typeDocumento de conferenciaes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiCiencias de la Computación e Información
dc.identifier.aniiPOS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.es
dc.type.versionPublicadoes
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Ciencias de la Computación e Informaciónes
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
On_the_fly_Verification_of_Recurrent_Neural_Networks_through_Automata_Learning.pdfDescargar 470.86 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)