Título : Generalized Exact Scheduling: a Minimal-Variance Distributed Deadline SchedulerGeneralized Exact Scheduling: a Minimal-Variance Distributed Deadline Scheduler
Autor(es) : Nakahira, Yorie
Ferragut, Andres
Wierman, Adam
Fecha de publicación : 13-oct-2021
Tipo de publicación: Artículo
Versión: Aceptado
Publicado por: INFORMS
Publicado en: Operations Research
Areas del conocimiento : Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
Otros descriptores : Online scheduling
Resumen : Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, unpredictability and instability in service capacity often incur operational and infrastructural costs. In this paper, we seek to characterize optimal distributed algorithms that maximize the predictability, stability, or both when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes both the stationary mean and variance of the service capacity subject to strict demand and deadline requirements. For more general settings, we characterize the minimal-variance distributed policies with soft demand requirements, soft deadline requirements, or both. The performance of the optimal distributed policies is compared to that of the optimal centralized policy by deriving closed-form bounds and by testing centralized and distributed algorithms using real data from the Caltech electrical vehicle charging facility and many pieces of synthetic data from different arrival distribution. Moreover, we derive the Pareto-optimality condition for distributed policies that balance the variance and mean square of the service capacity. Finally, we discuss a scalable partially-centralized algorithm that uses centralized information to boost performance and a method to deal with missing information on service requirements.
URI / Handle: https://hdl.handle.net/20.500.12381/469
Institución responsable del proyecto: Universidad ORT Uruguay
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FSE_1_2018_1_153050
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento 4.0 Internacional. (CC BY)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
main.pdfDescargar 1.34 MBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento 4.0 Internacional. (CC BY)