Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorQiwei, Yaoes
dc.contributor.advisorPiotr, Fryzlewiczes
dc.contributor.authorGervasio, Juan Ramirez Michelenaes
dc.contributor.authorFinbar, Rhodeses
dc.contributor.authorShruti, Sonies
dc.date.accessioned2026-01-27T12:20:57Z-
dc.date.issued2025-11-18-
dc.identifier.urihttps://hdl.handle.net/20.500.12381/5396-
dc.description.abstractOur project addressed a practical problem for the UK energy transition: utilities need to reduce electricity use during peak hours to reduce the grid’s stress. In households, existing “one-size-fits-all” messages and incentives work unevenly because each one has very different consumption habits. Using half-hourly smart meter readings, we developed a behavioural clustering pipeline that groupshouseholds into clear “behavioural profiles” based only on how they use electricity (for example, daytime vs evening use, weekday vs weekend patterns, and seasonality), without relying on surveys ordemographic data. We first designed and tested this approach on the UK Energy Demand Research Project dataset (2007–2010), and then applied it to EDF’s Beat the Peak+ randomised controlled trial (2023–2024) to evaluate how different behavioural groups changed peak-time consumption under tiered incentives. To quantify impact and identify who responds most, we combined standard causal methods with machine learning models for heterogeneous treatment effects and quantile-based analysis. The main contribution is clear evidence that behaviour-based segmentation predicts responsiveness much better than socioeconomic variables, and therefore can be used to target demand-side programmes more efficiently. In particular, the “Stay-at-Home” profile showed the most consistentreductions in weekday peak demand (around 7% on average), while low-consumption householdsshowed little to no change. A second key result is that average effects can mask importantheterogeneity: the largest reductions are concentrated in a smaller subset of high-respondinghouseholds, which our quantile analysis and heterogeneous treatment effect models helped identify. Overall, we produced a practical and scalable framework for using smart meter data to design targeted peak demand reduction interventions, improving programme cost-effectiveness for utilities and supporting national decarbonisation objectives.es
dc.description.sponsorshipAgencia Nacional de Investigación e Innovaciónes
dc.language.isoenges
dc.publisherThe London School of Economics and Political Scienceses
dc.rightsAcceso restringido*
dc.subjectMachine Learninges
dc.subjectResidential Electricity Consumptiones
dc.titleBuilding a recommendation system for residential electricity consumption reductiones
dc.typeTesis de maestríaes
dc.subject.aniiCiencias Naturales y Exactas
dc.subject.aniiMatemáticas
dc.subject.aniiEstadística y Probabilidad
dc.identifier.aniiPOS_CHEV_2023_1_1013410es
dc.type.versionRevisadoes
dc.rights.embargoreasonLa tesis se realizó en conjunto con EDF Energy. Debido a la naturaleza de esta colaboración, la empresa ha solicitado la firma de un Acuerdo de Confidencialidad (Non-Disclosure Agreement).*
dc.rights.embargoterm9999-01-01*
dc.anii.subjectcompleto//Ciencias Naturales y Exactas/Matemáticas/Estadística y Probabilidades
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
P3_ResidentialElectricityConsumption (1).pdf
Acceso restringido
Descargar  Solicitar una copia4.49 MBAdobe PDF
Complete_with_Docusign_To_Sign_LSE_EDF_-_14_.pdf
Acceso restringido
Descargar  Solicitar una copiaAcuerdo de confidencialidad685.49 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: