| Título : | Building a recommendation system for residential electricity consumption reduction |
| Autor(es) : | Gervasio, Juan Ramirez Michelena Finbar, Rhodes Shruti, Soni |
| Fecha de publicación : | 18-nov-2025 |
| Tipo de publicación: | Tesis de maestría |
| Versión: | Revisado |
| Supervisor(es) : | Qiwei, Yao Piotr, Fryzlewicz |
| Publicado por: | The London School of Economics and Political Sciences |
| Areas del conocimiento : | Ciencias Naturales y Exactas Matemáticas Estadística y Probabilidad |
| Otros descriptores : | Machine Learning Residential Electricity Consumption |
| Resumen : | Our project addressed a practical problem for the UK energy transition: utilities need to reduce electricity use during peak hours to reduce the grid’s stress. In households, existing “one-size-fits-all” messages and incentives work unevenly because each one has very different consumption habits. Using half-hourly smart meter readings, we developed a behavioural clustering pipeline that groupshouseholds into clear “behavioural profiles” based only on how they use electricity (for example, daytime vs evening use, weekday vs weekend patterns, and seasonality), without relying on surveys ordemographic data. We first designed and tested this approach on the UK Energy Demand Research Project dataset (2007–2010), and then applied it to EDF’s Beat the Peak+ randomised controlled trial (2023–2024) to evaluate how different behavioural groups changed peak-time consumption under tiered incentives. To quantify impact and identify who responds most, we combined standard causal methods with machine learning models for heterogeneous treatment effects and quantile-based analysis. The main contribution is clear evidence that behaviour-based segmentation predicts responsiveness much better than socioeconomic variables, and therefore can be used to target demand-side programmes more efficiently. In particular, the “Stay-at-Home” profile showed the most consistentreductions in weekday peak demand (around 7% on average), while low-consumption householdsshowed little to no change. A second key result is that average effects can mask importantheterogeneity: the largest reductions are concentrated in a smaller subset of high-respondinghouseholds, which our quantile analysis and heterogeneous treatment effect models helped identify. Overall, we produced a practical and scalable framework for using smart meter data to design targeted peak demand reduction interventions, improving programme cost-effectiveness for utilities and supporting national decarbonisation objectives. |
| URI / Handle: | https://hdl.handle.net/20.500.12381/5396 |
| Financiadores: | Agencia Nacional de Investigación e Innovación |
| Identificador ANII: | POS_CHEV_2023_1_1013410 |
| Nivel de Acceso: | Acceso restringido |
| Aparece en las colecciones: | Publicaciones de ANII |
Archivos en este ítem:
| archivo | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| P3_ResidentialElectricityConsumption (1).pdf Acceso restringido | Descargar Solicitar una copia | 4.49 MB | Adobe PDF | ||
| Complete_with_Docusign_To_Sign_LSE_EDF_-_14_.pdf Acceso restringido | Descargar Solicitar una copia | Acuerdo de confidencialidad | 685.49 kB | Adobe PDF |
Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita:
