Título : Universal Reliability Bounds for Sparse Networks
Autor(es) : Romero, Pablo
Fecha de publicación : 17-mar-2021
Tipo de publicación: Artículo
Versión: Enviado
Publicado por: IEEE
Areas del conocimiento : Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
Otros descriptores : All-Terminal Reliability
Reliability Bounds
Uniformly Most Reliable Graphs
Uniformly Least Reliable Graphs
Resumen : Consider a graph with perfect nodes and edges subject to independent random failures with identical probability.The all-terminal reliability (ATR) is the probability that the resulting subgraph is connected. First, we fully characterize uniformly least reliable graphs (ULRG) whose co-rank is not greater than four. Universal reliability bounds are here introduced for those graphs. It is formally proved that ULRG are invariant under bridge-contractions, and maximize the number of bridges among all connected simple graphs with a prescribed number of nodes and edges. A closed-form for the maximum number of bridges is also given, which has an intrinsic interest from a graphtheoretic point of view. Finally, the cost-reliability trade-off is discussed, comparing the number of edges required to reduce the reliability gaps between the least and most reliable graphs. A remarkable conclusion is that the network design is critical under rare event failures, where the reliability-gap between least and most-reliable networks is monotonically increasing with the number of terminals
URI / Handle: https://hdl.handle.net/20.500.12381/648
DOI: 10.1109/TR.2021.3061075
Institución responsable del proyecto: Universidad de la República
Universidad de Buenos Aires
Financiadores: Agencia Nacional de Investigación e Innovación
Identificador ANII: FCE_1_2019_1_156693
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
10 (1).pdfDescargar IEEE - Transactions on Reliability308.69 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)