Título : Property Checking with Interpretable Error Characterization for Recurrent Neural Networks
Autor(es) : Mayr, Franz
Visca, Ramiro
Yovine, Sergio
Fecha de publicación : ago-2020
Tipo de publicación: Documento de conferencia
Versión: Publicado
Publicado en: Machine Learning and Knowledge Extraction - International Cross-Domain Con- ference, CD-MAKE 2020
Areas del conocimiento : Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Otros descriptores : Artificial intelligence
Machine Learning
Verification
Resumen : We propose a procedure for checking properties of recurrent neural networks used for language modeling and sequence classification. Our approach is a case of black-box checking based on learning a prob- ably approximately correct, regular approximation of the intersection of the language of the black-box (the network) with the complement of the property to be checked, without explicitly building individual represen- tations of them. When the algorithm returns an empty language, there is a proven upper bound on the probability of the network not verifying the requirement. When the returned language is nonempty, it is certain the network does not satisfy the property. In this case, an explicit and inter- pretable characterization of the error is output together with sequences of the network truly violating the property. Besides, our approach does not require resorting to an external decision procedure for verification nor fixing a specific property specification formalism.
URI / Handle: https://hdl.handle.net/20.500.12381/458
Identificador ANII: POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.
Nivel de Acceso: Acceso abierto
Licencia CC: Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)
Aparece en las colecciones: Publicaciones de ANII

Archivos en este ítem:
archivo  Descripción Tamaño Formato
On_the_fly_Verification_of_Recurrent_Neural_Networks_through_Automata_Learning.pdfDescargar 470.86 kBAdobe PDF

Las obras en REDI están protegidas por licencias Creative Commons.
Por más información sobre los términos de esta publicación, visita: Reconocimiento-NoComercial 4.0 Internacional. (CC BY-NC)